FINITE ELEMENT MODELLING OF A 2D INDUCTION HEATING PROBLEM

Dr Aurik Andreu, Dr Gabriel Barrenechea, and Katherine MacKenzie

University of

Glasgow

Strathclyde

University of Strathclyde

Challenges of modelling induction heating

Induction heating is a method of heating metal that is widely used in industry. One difficulty in building a finite element model is the **steep gradients** in magnetic field and temperature due to the skin-effect, which depends on the frequency of the current.

Fig. 1: 3D induction heating domain.

Fig. 2: C42 mod-microalloyed steel has a skin depth of about 40μ m for a frequency of 100kHz. Image from [2].

Induction heating equations

Let Ω be the 2D cross section of the billet with boundary $\partial \Omega$. Denote the temperature by *u*, and magnetic field strength by *H*. Solve the magnetic equation

 $-\operatorname{div}(\sigma^{-1}(u)\nabla H) + i\omega\mu(u)H = 0$ in Ω , $H = H_0$ on $\partial \Omega$,

and the **heat equation**

$$(u)C_{p}(u)\frac{\partial u}{\partial t} - \operatorname{div}(\kappa(u)\nabla(u)) = \frac{1}{2\sigma(u)}|\nabla H|^{2} \quad \text{in } \Omega,$$
$$-\kappa(u)\frac{\partial u}{\partial n} = \alpha(u|u|^{3} - u_{\text{amb}}^{4}) + \beta(u - u_{\text{amb}}) \quad \text{on } \partial\Omega.$$

Here, σ , μ , ρ , C_p and κ are material properties depending on u, H_0 is the magnetic field strength in air, u_{amb} is the ambient temperature, ω is the current frequency, and α and β are the radiative and convective coefficients, respectively [1].

Effect of the Curie point

Fig. 5: Relative permeability of C42 mod-microalloyed steel from $25 - 1600^{\circ}$ C.

When the temperature reaches the **Curie point** there is a steep discontinuity in the magnetic permeability. This adds stiffness to the systems of equations and makes the convergence of the FEM challenging.

Experiment setup

Fig. 4: Cross-sectional layout of the inductor and instrumented sample.

Here we run an experiment with C42 mod-microalloyed steel sample and compare the model to experimental data. The frequency is 95kHz with skin depth of 42μ m.

Choice of mesh

Fig. 6: An anisotropic mesh.

Fig. 7: A conforming mesh.

Anisotropic meshes capture the skin-effect, but the **irregular shape** of the elements can cause problems. **Conforming meshes** can handle more complex geometries but are more **computationally expensive**.

Experiment results

Comparison of the Model Solution to the Experimental Data

The results show that this model has a good fit to the experimental data until it reaches the Curie point. After that, at the Curie point, the discontinuity in the physical coefficients creates a locking phenomenon that does not allow the temperature to increase.

Fig. 8: Photograph of the experiment.

Fig. 9: Results from the experiment.

References

[1] R. Touzani and J. Rappaz. Mathematical Models for Eddy Currents and Magnetostatics: with Selected Applications. (2014) Springer Nature. [2] S. Lupi, M. Forzan, and A. Aliferov. Induction and Direct Resistance Heating: Theory and Numerical Modelling. (2015) Cham: Springer International Publishing AG.

Acknowledgments: Katherine MacKenzie is supported by a University of Strathclyde SEA scholarship with support from EPSRC and by Bifrangi UK Ltd.