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Background



• ~ 4 million times energy 
from burning coal, oil, or 
gas (at equal mass of fuel)

• 4x the energy from 
nuclear fission reactions 
(at equal mass of fuel)

• Magnetic confinement 
reactor – tokamak

• Spherical Tokamak for 
Energy Production (STEP) 
due to be built in 2040 T. Clynes and 

C. Philpot / 
IEEE Spectrum 

(2020)

n + 14.1 MeV

He + 3.5 MeV

Tritium

Deuterium



M.R. Gilbert et al. / Nucl. Fusion 59 (2019) 076015



Current Materials

• Reduced Activation Ferritic Martensitic (RAFM) steels

• EUROFER97

Issues

• Clustering

• Embrittlement

• Swelling

• Activation

• Bubble formation

• Irradiation induced creep B. Gomez-Ferrer et al. / Journal of 
Nuclear Materials 537 (2020) 152228
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Alloy development



Alloy name Fe Cr C Mn HT
[wt%] °C

Fe8Cr Bal 8 0.11 - 980
Fe8Cr0.4Mn 0.4 980
Fe8Cr0.4Mn 0.4 1150
Fe8Cr1Mn 1.0 980
Eurofer-97 89.14 9 0.11 0.4 + W, V, Ta, 

N2

Fe8Cr0.11C(0-1.5)Mn

Heat Treatment Route:
Normalise at HT -> Water Quench -> Temper at 760°C -> Air Cool

E. Gaganidze et al. / UKAEA-CCFE-PR(18)63



Vacuum Induction Melt (VIM) samples

Sample preparation of surface

Pre-irradiation analysis:
• Optical microscopy
• Scanning Electron Microscopy (SEM) 
• Energy Dispersive X-ray (EDX) Spectroscopy
• Inductively Coupled Plasma Optical Emission 

Spectroscopy (ICP-OES)
• Dilatometry vs ThermoCalc
• Grazing Incidence X-Ray Diffraction (GIXRD)
• Nano-indentation
• Laser Flash Analysis (LFA)

Irradiation planning



Pre-irradiation analysis



Fe8Cr0.11C0.4Mn HT980





Fe8Cr0.11C: 15.603°
Fe8Cr0.11C0.4Mn: 15.593°
Fe8Cr0.11C1Mn: 15.578°

3.5 µm



Force: 500mN
Rate: 20mN/s
20 indents per sample

20µm

50µm

50µm

1 6 11 16

2 7 12 17

3 8 13 18

4 9 14 19

5 10 15 20

0Mn 0.4Mn (980HT) 0.4Mn (1150HT) 1Mn

Hardness [GPa] 1.88 +/- 0.10 2.03 +/- 0.09 1.91 +/- 0.07 2.19 +/- 0.08



Irradiation theory



Type and amount of damage 
produced depends on:

• Nature of particle

• Mass of particle

• Energy of particle

• Nature of material
Incident particle

Primary knock-on atom (PKA)

Collision cascade

Collision



Displacements per atom: 
number of times that an atom is 
displaced for a given fluence

Fluence: total number of 
particles that intersect a unit 
area over a specific time interval

dpa is used to normalise 
the amount of radiation 

damage that different 
reactors produce

S.J. Zinkle & J.T. Busby / Mater. Today 12 (2009) 12 



Cause significant levels of damage:

A single 1 MeV neutron creating a 
PKA in an iron lattice will produce 
approximately 1100 Frenkel pairs 

Induce other effects: 

• Induce collision 
cascades - scattering

• Absorption to induce 
fission

• Absorption – producing 
γ radiation, or β-

particle: 

n + 14.1 MeV

He + 3.5 MeV

Tritium

Deuterium



Irradiation planning





• Proton irradiation

• Energy: 1.5 MeV

• Fluence: 9.95 x 1018 ions/cm2

• Damage: 0.5 dpa in plateau

• Temperature:
a. Low temp hardening 

embrittlement: 300 °C
b. Transition at 350 °C (DBTT), 

out of transition: 400 °C
• (Upper limit: 500 °C)

1

2

3

4

Irradiation area

Samples

3 mm

6 mm

15 mm

1. Fe8Cr0.11C (HT at 980/760 degC)

2. Fe8Cr0.11C0.4Mn (HT at 980/760 degC)

3. Fe8Cr0.11C0.4Mn (HT at 1150/760 degC)

4. Fe8Cr0.11C1Mn (HT at 980/760 degC)





Irradiate each sample individually in order of priority:

1. 1Mn 980HT 400°C

2. 0.4Mn 980HT 400°C

3. 0Mn 980HT 400°C 

Options after those 3:

• 0.4Mn 1150HT 400°C to same dose/dose rate would give a full set

• Not enough time to complete full sample: possibly both 0.4Mn HTs 
at 400°C to a lower dose or at higher dose rate

• Test thicker/larger samples plates



• Fe heavy-ion irradiation

• Energy: 2 MeV (max at Surrey)

• Fluence: 4.54 x 1014 ions/cm2

• Damage: 0.5 dpa at Bragg peak (to 
align with proton irradiation 
plateau)

• Temperature: 400 °C (same as 
proton)

• Area: same as original proton plan – 
beam heating will be undetectable, 
so all 4 matchstick samples at once



Post-irradiation

• SEM

• EDX

• Transmission electron microscopy (TEM) prepared using Focussed 
Ion Beam (FIB) and/or electropolishing

• Atom Probe Tomography (APT) prepared FIB

• GIXRD

• Nano-indentation
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