

Materials Science and Engineering Gwyddor Deunyddiau a Pheirianneg

A Computational Approach towards Proactive Scale Management for Steel Pipelines

Megan Kendall¹, Elizabeth Sackett¹, Chris Owen², and Michael Auinger³

¹Swansea University
²Tata Steel UK
³University of Warwick

Engineering and Physical Sciences Research Council

Tubes, TMP, and Thermochemistry

- **Oxide scale** growth on surface during high temperature processing
 - Yield loss **1.5-3% total feedstock lost** due to scale
 - Surface defects
 - Premature **failure** (manufacture, installation and service)
 - Aesthetics customer **product rejection**

A shape of engineering significance...

(Norsk Oljemuseum, 2024)

(BBC News, 2024)

(E Romano, 2023)

Geometry matters...

Project Background

 $Oxidation = f\begin{pmatrix} Wall thickness, Chemistry, Thermal Cycle, \\ Furnace Environment, Heating Approach, Geometry \end{pmatrix}$

- Reduction of scale
 - Reduced plant damage and contamination
- Improved surface quality
 - Consistent and predictable failure mode
- Key scale parameters
 - Thermodynamic thickness, δ
 - Mechanical adhesive/cohesive strength, $\sigma_{adhesion/cohesion}$

Project Background

Proactive scale management

Computational thermodynamics

Increased manufacturing agility ≥

Oxide Kinetics Computational Model

Megan Kendall - Swansea University

(1)

Development of Predictive

Computational Oxide Kinetics Model Inc

Oxide Kinetics Computational Model

(1)

Development of Predictive Computational Oxide Kinetics Model

Curved Geometry Effects: Kinetics

- For tubes with an inner radius larger than 200mm, inner diametric changes no longer influential.
 - Approaching flat plate solution
- Tata Tubes Install[®] Plus tube radii range from to 5.3mm to 80.6mm
 - Critical radius is **industrially relevant**

The Effect of Curved

Geometry on Oxide Kinetics and Mechanics

10

Curved Geometry Effects: Kinetics

- Thermogravimetric Analysis experimentally challenging
 - Unexpected mass loss and isothermal noise
 - Forced vibration induced by thermal currents
 - Compressible flow boundary layer effects within furnace tube and sample tube

The Effect of Curved Geometry on Oxide Kinetics

and Mechanic

Curved Geometry Effects: Kinetics

- Thermogravimetric Analysis experimentally challenging
 - Unexpected mass loss and isothermal noise
 - Forced vibration induced by thermal currents
 - Compressible flow boundary layer effects within furnace tube and sample tube
 - Refractory 'dummy' test
 - Oxide mass gain = difference between curves

• 5% difference between experiment and model prediction for same conditions

The Effect of Curved Geometry on Oxide Kinetics

and Mechanic

The Effect of

- Mechanical approach ('Equal biaxial stretching')
 - "Clamped" oxide (no material flow),
 - Surface area change,
 - Change in material thickness
- Oxidation-centric approach
 - Metal-to-oxide transformation + phase/microstructural transformations
 - Specific to **curved surfaces**
 - New oxide at metal-scale interface and substrate retreat leads to
 contact loss oxide no longer able to follow volumetric changes
 - Thermally, $\sigma_{ox,T}$, and dimensionally, $\sigma_{ox,G}$, induced

The Effect of

M

Rφ

 $\sigma_{ox,G}$

 $\varphi = \frac{V_{oxide}}{V_{metal}} = \frac{W_{oxide}P_{metal}}{W_{metal}\rho_{oxide}}$ From thermodynamic database

$$M = \dot{\varphi}(1 - \alpha) - (1 - V)$$

Predicted by mode

to oxidation at the scale outer surface (remainder at metalscale interface)

> Fraction of metal supplied from bulk due to vacancy injection mechanism (remaining fraction from metal surface immediately below oxide)

Tube inner radius (already defined in model)

Megan Kendall - Swansea University

 $\sigma_{ox,T}$

The Effect of Curved Geometry on Oxide Kinetics and Mechanics

Better representation than oxide thickness alone ٠ Through-thickness cracking Interfacial (+) Interfacial (-) 3 Interfacial cracking Buckling Crack deflection Through-thickness cracking Spalling Shear ⁶critical Critical oxide thickness = 0.012051nm, Critical brittle failure strain = 0.10564

10¹

W

Fracture mechanics theory ٠

Buckling

Interfacial cracking

Spalling

Crack deflection

shear

-2

-3

-4 10⁰

Operational history parameter, ω

 10^{2}

Construction of **Process-Specific Oxide Scale Failure** Diagram

3

Case Study: Transition to induction heating technology at Corby site

- Faster, more aggressive heating
- Improved operational control
- **Operational history changes** → total strain changes
 - Maximum permissible residual hoop stress of 100MPa at 530Hz current frequency (Drobenko et al, International Journal of Engineering Science, 2017) – numerical result
- ε_{gas} =-0.0948, ε_{ind} = 0.0032
 - Change from overall tensile to compressive strain if heating controlled

Hoop Stress Source		ε _{gas} (-)	ε _{ind} (-)	
Oxidation- induced	Thermal mismatch	-0.0988	-0.0008	
	Growth stress (intrinsic)	0.0047	0.0047	
Manufacturing -induced	Forming	-0.0007	-0.0007	X-ray Diffraction
	Drawing			result

3

Construction

Diaaraı

Case Study: Transfer to induction heating technology at Corby site

- **Parabolic rate law** 1s resolution data for normalisation soak period ($t \le 5$ mins)
 - Oxide thickness, δ , of 99.7 μ m after 3-minute normalisation at 1000°C

Construction o Process-Specific Oxide Scale Failure Diagram

knt

Case Study: Transfer to induction heating technology for tube normalisation at Corby site

Gas furnace normalisation

Induction furnace normalisation

Construction or Process-Specific Oxide Scale Failure Diagram

Conclusions

- **Experimental** (thermogravimetric) assessment of high-temperature oxidation on curved surfaces prone to **significant uncertainty**.
 - Difficult to recreate complex industrial conditions.
- **Computational**, geometry-specific modelling of oxidation offers better opportunity for multiple **parameter control** and **continuous** oxide thickness gain **data**.
- High-temperature oxidation of carbon steel on curved geometry should be considered separately from planar geometries for small radii (≤200mm internal) tubes.
- Oxide thickness data is integral to **analytical mechanical models** of oxide stress state and adhesion.
 - Advanced Oxide Scale Failure Diagram can be used to represent critical strains for different failure modes.
 - Example of use during assessment of Tata's transition from **gas-barrel to induction furnace** normalisation of conveyance tubes.

Megan Kendall - Swansea University

Real-World Applications & Impact

- Impact at different levels
 - Company
 - More efficient use of feedstock
 - Extended plant life
 - Industry 4.0 techniques
 - Scientific
 - New applications for computational thermochemistry
 - Community
 - Better use of resources
 - Transition to sustainable manufacturing tech
 - Higher quality products with improved service

With thanks to

Engineering and Physical Sciences Research Council

Case Study: Transfer to induction heating technology for tube normalisation at Corby site

* borderline

For δ_{ox} = 100µm (provided by model):

- $\varepsilon_{gas} = -0.0032, \, \varepsilon_{ind} = 0.0032$
 - Transition from overall compressive to overall tensile strain with heating control
- **Spalling eliminated** via heating control
 - Compressive failure modes eliminated by tensile state e.g. buckling, crack deflection
 - Many other options for parameter control

Failure Mode	Critical strain for 100 (-)	$\varepsilon_{gas} \geq \varepsilon_{crit}$?	$\varepsilon_{ind} \geq \varepsilon_{crit}$?
Buckling	-0.0035	×*	×
Crack deflectio n	-0.0107	×	×
nterfacia cracking	±0.0025	\checkmark	~
Shear	-0.0041	×	×
Spalling	-0.0011	~	×
Through- hickness cracking	0.0020	\checkmark	~
Brittle*	±0.1056	×	×

Construction of Process-Specific Oxide Scale Failure Diagram

 $\sigma_{ox,T}$

Composite Simpson's rule on stress differential function

The Effect of Curved Geometry on Oxide Kinetics and Mechanics

Curved Geometry Effects: Mechanics 2 The Effect of Curved $\sigma_{ox,G}$ Geometry on **Oxide Kinetics** and Mechanics 14000 12000 10000 10000 1999 P. P. 8000 σ (MPa) 6000 HOOP 4000 RADIAL 2000 0 -2000 -4000 2 3 5 6 7 8 0 1 4 9 Time (s) $\times 10^4$

Manufacturing stress: Forming

2 The Effect of Curved Geometry on Oxide Kinetics and Mechanics

Pipe 1

Pipe 2

 θ (°)

Pipe 3

Pipe 4

M. Krzyzanowski and J. H. Beynon, Modelling and Simulation in Materials Science and Engineering, 2000.

The Effect of Curved Geometry on Oxide Kinetics and Mechanics

(2)